The Database Language SQL
Simple Queries in SQL
Queries Involving More Than One Relation
Subqueries
Full-Relation Operations
Database Modifications
Transactions in SQL
Serializability
Atomicity
Transactions
Read-Only Transactions
Dirty Reads
Other Isolation Levels
Index Structures
数据库索引优化
Optimization
Concurrency Control
Multiversion Concurrency Control (多版本并发控制)
全称是Multi-Version Concurrent Control,即多版本并发控制,在MVCC协议下,每个读操作会看到一个一致性的snapshot,并且可以实现非阻塞的读。MVCC允许数据具有多个版本,这个版本可以是时间戳或者是全局递增的事务ID,在同一个时间点,不同的事务看到的数据是不同的。
MySQL的innodb引擎是如何实现MVCC的
innodb会为每一行添加两个字段,分别表示该行创建的版本和删除的版本,填入的是事务的版本号,这个版本号随着事务的创建不断递增。在repeated read的隔离级别(事务的隔离级别请看这篇文章)下,具体各种数据库操作的实现:
- select:满足以下两个条件innodb会返回该行数据:
- 该行的创建版本号小于等于当前版本号,用于保证在select操作之前所有的操作已经执行落地。
- 该行的删除版本号大于当前版本或者为空。删除版本号大于当前版本意味着有一个并发事务将该行删除了。
- insert:将新插入的行的创建版本号设置为当前系统的版本号。
- delete:将要删除的行的删除版本号设置为当前系统的版本号。
- update:不执行原地update,而是转换成insert + delete。将旧行的删除版本号设置为当前版本号,并将新行insert同时设置创建版本号为当前版本号。
其中,写操作(insert、delete和update)执行时,需要将系统版本号递增。
由于旧数据并不真正的删除,所以必须对这些数据进行清理,innodb会开启一个后台线程执行清理工作,具体的规则是将删除版本号小于当前系统版本的行删除,这个过程叫做purge。
通过MVCC很好的实现了事务的隔离性,可以达到repeated read级别,要实现serializable还必须加锁。
参考:[MVCC浅析](
Optimistic locking and pessimistic locking (乐观锁和悲观锁)
Optimistic Concurrency Control : Instead of locking, a scheduler can assume transactions will be serializable, and abort a transaction if some potentially nonserializable behavior is seen. This approach, called optimistic, is divided into timestamp-based, and validation-based scheduling.
Pessimistic concurrency control: A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a transaction at the very beginning.
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作
乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。
Locking Replicated Data (锁定复制的数据): When database elements are replicated at several sites, global locks on an element must be obtained through locks on one or more replicas. The majority locking method requires a read or write-lock on a majority of the replicas to obtain a global lock. Alternatively, we may allow a global read lock by obtaining a read lock on any copy, while allowing a global write lock only through write locks on every copy.